
" O-07 0 ARFOCERIGTAEOAUIAL LABS RIGHTPATTERSON AFB OH F/G 9/2

ADA TEST AND EVALUATION.(U)
MAY BO A J SCARPELLI

UNCLASSIFIED AFWAL-TR-BO-1024 NL
E llEllllEIlE

III

HA i28 5__

BIH~~ ~ 2 __I.,11

LZ

AFAL-TR-80-1024

Ada TEST AND EVALUATION

Alfred J. Scarpelli
System Technology Branch
Systen Avionics Division

00 May 1980

TECHNICAL REPORT AYAL-TR-80-1024

Final Report for Period 15 May 1979 - 1 January 1980

Approved for public release; distribution unlimited.

-gc , AVIONICS LABORATORY
L AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

M 8-08 8 008~

When Covvrnmwnt drawinqs, specifications, or other data are used for any pur-

pose other than fn connection with a definitely related Government procurement

opera ion, the United States Govcrnawot thereby incurs no responsibility
nor any

obligation whatsoever; and the fact that the government my have formulated,

furnished, or in any way supplied the said drawings, specifications,
or other

data, is not to be reqarded by implication or otherwise as in any manner
licen-

sing the holder or any other person or corporation, or conveying any rights or

permission to manufacture, use, or sell any patented invention that my in any

way be related thereto.

This report has been reviewed by the Information Office (OX).and is releasable

to the National Technical Information Service (NTIS). At NTIS, it will be avail-

able to the general public, including foreign nations.

This technical report, has been reviewed and is approved for publication.

ALFWD J. SOARtPELLI ti DAVID J. BRAZIL, CAPT, USAF

Project Engineer Tech Mgr, Software & Processor Grp

System Technology Branch

FOR THE CcaVANDR

RA tti, . siFDt, EoL, USAF
Chief, System Avionics Division
Avionics Laboratory

"If your address has chAnged, if you wish to be removed from our mailing list,

or if the addressee is no longer employed by your organization please notify

AFWAL/AAAT-2,v-pAFB, ON 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by se-

curity considerations, contractual oblig~tionu, or notice on a specific document.

SECURITY CLASSIFICATION OF THIS PAGE (lon Dae Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

AtRL-TX-8f-L2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMUBER

4. TITLE(and- S. TYE OPF ReVaWYS *PeO COER

Ada Test and EvaluationJ Final echnical - ept i 8
'~'15 May 079 - 1 Janasmp.W8~

G. PaEfORM44 ORG, RPORT WS.an

7. AUTHOR(a) 0. CONTRACT OR GRANT NUMBER(s)

Alfred J Scarpelli 1) ! .

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Avionics Laboratory (AAAT-2) / AREA & WORK UNIT NUMBERS

AF Wright Aeronautical Laboratories, AFSC 2003-04-22 ,,,

Wright-Patterson Air Force Base, Ohio 45433 I"

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Avionics Laboratory (AAA) May 1980
AF Wright Aeronautical Laboratories, AFSC 13. NUMBER OF PAGES
Wright-Patterson Air Force Base, Ohio 45433 43

14. MONITORING AGENCY NAME & ADORESS(i different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

ISa. DECL ASSI FIC ATION/DOWNGRADING
SCHEDULE

I6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered In Slock 2, II dlifferoent from Report)

IS. SUPPLEMENTARY NOTES

I9. KEY WORDS (Continue on re roe side If necessary end Identify by block number)

Ada, Ada Test and Evaluation, Embedded Computer Systems, High Order Language
Working Group, HOLWG, STEELMAN, Ada Language Environment, ALE, Ada Language
Integrated Computer Environment, ALICE, Digital Avionics Information System,
DAIS, JOVIAL, J73/I, Design Validation Report.

20. ABSTRACT (Continue an revere, side If necoeary end identify by block number)

Ada is the proposed Department of Defense general purpose programming language
for embedded computer system applications. The language was designed according
to the STEELMAN requirements developed by HOLWG of DARPA. The primary objective
of this Work Unit was to test and evaluate the Ada language in relation to the
specific needs of the Air Force, as well as DOD. This effort supported the
overall Test and Evaluation program sponsored by DARPA.

The AL Test and Evaluation project was to recode the Digital Avionics

DD 7 1473 EDITION OF I NOV 9% IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Men Date Enterodr)

SECURITY CLASSIFICATION OF T141S PAOE(Whum "a EAltwd)

20. Abstract (cont'd)

Information System (DAIS) Local Executive from JOVIAL J73/1 to Ada. The
results were incorporated Into a Design Validation Report and submitted to
HOLWG. Design Validation Reports from all Ada Test and Evaluation participants
were to be evaluated and then the Ada language design would be finalized.

SECURITY CLASSIFICATION OF TNIS PAGG(Wmae Date ftfeee

AFWAL-TR-80-1024

FOREWORD

This report describes an in-house effort conducted at the Avionics

Laboratory, System Avionics Division, System Technology Branch, Air Force

Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio

45433, under USAF Project 2003, entitled "Avionic System Design

Technology," Task 04, entitled "Computer and Software Resources," and Work

Unit 22, entitled "Ada Test and Evaluation."

The work reported herein was performed during the period 15 May 1979

to 1 January 1980, under the direction of the author, Alfred J. Scarpelli

(AFWAL/AAAT-2), project engineer. The report was released by the author

in January 1980.

The author wishes to thank Capt Steven R. Sarner, Dr. Hark

T. Michael, and Guy A. Vince (AFWAL/AAAT-2), and Hike Burlakoff and Ronald

Szkody (AFWAL/AAAS-1) for their contributions and assistance.

The author wishes to express his special appreciation to Capt David

J. Brazil (AFWAL/AAAT-2) for his guidance, support, and assistance, and to

Pamela K. Gross (AFWAL/AAAT-2) for her encouragement and moral support.

ii'.

ATWAL-TR-80-1 024

TABLE OF CONTENTS

SECTION PAGE

I INTRODUCTION 1

11 OVERVIEW OF THE Ada LANGUAGE 3

III APPROACH AND MILESTONES 5

IV DESIGN VALIDATION REPORT 9

V CONCLUSIONS 36

fREFERENCES 37

AIcsinFr

4 . cl

I,,,,

V ~1 16 59Jgo PAM £%AW.IIT TI UW

I

AFWAL-TR-80-1024

SECTION I

INTRODUCTION

Ada is the proposed Department of Defense general purpose programming

language for embedded computer system applications. An embedded computer

system is integral to an electronic or electromechanical system (for

example, combat wapon system, tactical system, aircraft, ship, missile,

spacecraft, command, control and communication systems) from a design,

procurement and operations viewpoint (Reference 1).

The program to establish a single high order programming language for

use by all DoD agencies began in 1975. It was sponsored by the High Order

Language Uorking Group (HOLWG) of the Defense Advanced Research Projects

Agency (DARPA). The initial task was to define a set of requirements for

such a common language. Beginning with the Initial April 1975 STRAWHAN

requirements, a refining process occurred, resulting in WOODEN4AN, TINHAN,

IRONHAN, REVISED IR0UAN, and finally, the current version, STEELMAN,

dated June 1978 (Reference 2). As a parallel effort. HOLWG analyzed 23

existing languages and by January 1977, determined that none of these

could meet the existing requirements (Reference 3).

Four companies, Softech, Intermetrics, Cii Hloneywell Bull, and

Stanford Research Institute were given contracts to develop such a

language according to the STEEIMAN requirements. All used the PASCAL

programming language as a basis for their candidate language (Reference

3). Of the four, the GREEN language developed by Cii Honeywell Bull was

chosen on 1 May 1979. The language uas named Ada, in honor of Ada

1

AFWAL-TR-80-1024

Augusta, Lady Lovelace, the daughter of the poet, Lord Byron. Ada was

Charles Babbage's programmer, Babbage being the inventor of the first

mechanical computer.

Once the Ada language was chosen, a Test and Evaluation Program was

initiated by HOLWG. The Ada language was evaluated by government,

industry, and the academic sector. Each Test and Evaluation team was to

recode a specific application in Ada and then relate their experiences to

HOLWG through a Design Validation Report. These applications covered many

varied areas in order to fully evaluate the language.

This Work Unit had several objectives. The first was to study and

learn the language design of Ada. Other objectives were to determine the

desirable features of Ada, and also to define the deficiencies in the

existing specifications. The basis for the evaluation was to determine

the suitability of Ada to the specific needs of the Air Force, as well as

DoD. This Work Unit supported the overall T&E program sponsored by DARPA.

Section II is an overview of the Ada language. In Section III, the

approach to the Work Unit objectives, and the events and milestones which

occurred during this project, will be discussed. The primary product of

this project, the Ada Test and Evaluation Design Validation Report, is

presented in Section IV. Conclusions of this Work Unit are listed in

Section V.

2

AFWAL-TR-80-1024

SECTION II

OVERVIEW OF THE Ada LANGUAGE

Ada is a powerful language. It is designed for use in both

applications and systems programming. The language was engineered to

allow reliable programs to be written which are also very readable and can

be more easily maintained.

Some features of Ada include

- Strong data typing

- Algorithmic language like PASCAL or ALGOL-68

- Access types

- Support of multitasking

- Exception handling

Strong data typing forces the computer programmer to define the data

type of all variables used in his application. The compiler prevents him

from accidentally assigning one data type to another, or from doing

unintentional mixed-mode calculations. In this method of compiler error

detection, subtle programming errors can be eliminated which might

otherwise take much debugging time or may not even be detected.

The language is designed to handle all algorithmic processes.

Procedure flow is accomplished through such structured constructs as "if

then else" clauses, "case" statements, "loop" statements, "while" clauses,

"for" statements, and subprogram call capability.

Variables declared as access types in Ada have the characteristic of

3

AFWAL-TR-80-1 024

being allocated dynamically. They only use storage when specifically

allocated through execution of an allocator. Access types are also useful

for maintaining linked list data structures.

Ada allows for the parallel execution of tasks and provides means for

the rendezvous of tasks that must meet in order to pass data. Also, the

capability exists for tasks to wait on other tasks which must execute

prior to initial or further execution of the waiting task.

Ada allows a user to write his own exception handlers for run-time

errors which may occur. Instead of relying on a system error handler, a

programmer may specify code which instructs the computer on what to do

should an error, or exception, arise. The language has pre~defined

exceptions and the programmer may specify his own. These user defined

exceptions can then be raised by the programmer whenever and wherever he

deems appropriate.

For a detailed description of the Ada language, the reader is

referred to References 4, 5, and 6.

The Department of Defense has strongly stated that there are to be no

subsets or supersets of the Ada language. It is generally believed that

such a situation will occur despite the DoD stand. However, DOD will not

recognize any such variations as being Ada.

4

AFWAL-TR-80-1!024

• ., SECTION III

APPROACH AND MILESTONES

The Ada language design was studied during May and June 1979. The

primary sources for learning Ada were the Ada Reference Manual (Reference

4), the Ada Rationale (Reference 5), and the Ada Tutorial (Reference 6).

To enhance the training of Ada Test and Evaluation participants, one-week

language courses were sponsored by HOLUG. These courses were taught by

the language designers from Cii Honeywell Bull. The head instructor was

Jean D. Ichbiah, the principal Ada language designer.

The Air Force Ada language workshop was held at the U.S. Air Force

Academy, Colorado Springs, Colorado from 11-15 June 1979. Four Avionics

Laboratory (AL) representatives, including the author, attended the

workshop, which proved beneficial in learning Ada. This course was the

first one taught, with others held at the U.S. Military Academy, the Naval

Post-graduate school, Georgia Tech, and the National Physical Laboratory,

Teddington, England.

For its Test and Evaluation project, AL recoded the Digital Avionics

Information System (DAIS) Local Executive into Ada. DAIS is a current

major project of the System Avionics Division of AL. The DAIS Local

Executive, as well as all other DAIS mission software, is written in the

high order language JOVIAL J73/I.

The methodology used in the recode was

- Initial definition of the executive data and data structures in
Ada

5

AFWAL-TR-80-1024

- Line-for-line recode of the Local Executive routines

- Redesign the data structures and their access methods as
problems were uncovered

During the recode, consultations occurred with the DAIS Program Branch to

answer questions concerning DAIS and J73/I.

The AL Avionics System Analysis and Integration Laboratory (AVSAIL)

DECsystem-10 computer was the primary facility used on this project. Also

available were project accounts on the MULTICS systems at the

Massachusetts Institute of Technology (lIT), Cambridge, Massachusetts, and

at Rome Air Development Center (RADC), Criffiss Air Force Base, New York,

both accessable via the ARPANET through the DEC-i0. An Ada Test

Translator was hosted on both MJLTICS systems which was only capable of

syntactic and static semantic checking of Ada source programs. It was not

intended to execute Ada programs. The Test Translator saw very little

use, however, since it did not work correctly. As a result, the DEC-10

was used to write and store the Ada source code of the DAIS Local

Executive. MIT-MULTICS was only used to receive messages concerning the

Ada T&E program and PADC-MULTICS was not used at all.

Other facilities available included the DAIS Local Executive J73/I

source code, located on the DEC-10, and the DAIS library documents.

The recode phase covered the period from June 1979 to September 1979.

Upon completion of the Local Executive recode, the problems which AL

considered as major where determined and compiled into a presentation.

This talk was given by the author at the Ada Test and Evaluation Workshop

in Boston, Massachusetts on 23-26 October 1979.
6

AFWJAL-TR-80-1 024

The purpose of the Test and Evaluation Workshop was to allow Ada T&E

participants to discuss their Ada applications, and to determine language

issues which needed to be resolved. Also, the Workshop enabled those

present to learn new methods and techniques for programming in Ada. The

general feeling of those in attendance, including the language designers,

was that the basic design of the Ada language had survived the T&E phase

and that no major changes were necessary.

All results of the AL Test and Evaluation effort, both positive and4

negative, were gathered together into the Design Validation Report, which

is presented in Section IV. This report was in the form of a

questionnaire which was supplied by HOLWG. The Design Validation Reports

from all T&E participants ware due to HOLWG on 15 November 1979.

Evaluators could also issue Language Issue Reports (LIR). The

primary function of an LIR was to call special attention to a particular

Ada issue. The Design Validation Reports, along with the LIR's and input

from any other sources, were all to be reviewed. Then the language would

be finalized, making whatever changes were necessary.

Ada will undergo any changes determined necessary by the T&E phase

during the period from December 1979 to Spring 1980. In Spring 1980, the

language design will be fixed, allowing compilers and Ada support

environments to be built.

An effort is currently underway to define an Ada environment. The

Ada Language Environment (ALE) is the set of standards, conventions,

policies, tools and procedures, and agency directives that are necessary

AFWAL-TR-80-1024

for effective use of Ada over the software life cycle of embedded military

systems. The Ada Language Integrated Computer Environment (ALICE) is the

Program Development and Maintenance Environment which aids and supports

the production of programs for all applications of the Ada language --

small, medium, and large. ALICE is a key component of ALE (Reference 7).

A partial list of environment tools includes loaders, linkers, text

editors, debuggers, librarians, and utilities.

Definition of the requirements for the Ada Language Environment has

resulted in the PEBBLEHAN series of documents. This series includes

PEBBLEMAN, dated July 1978, REVISED PEBBLEMAN, and the current November

1979 PRELIMINARY STONEMAN document (Reference 8). The PRELIMINARY

STONEMAN was to be refined in December 1979.

An Ada Environment Workshop was held in San Diego, California on

27-29 November 1979. The purpose was to discuss requirements and

technology for the structure and content of an ALICE for production and

modification of software for embedded computer applications and

support (Reference 7).

8

AFWAL-TR-80-1 024

SECTION IV

DESIGN VALIDATION REPORT

The Avionics Laboratory (AL) Test and Evaluation Team consisted of

Alfred J. Scarpelli, Project Engineer, Capt Steven R. Sarner, USAF, AL Ada

Focal Point, Dr. Mark T. Michael, and Guy A. Vince, AFWAL/AAAT-2, and Mike

Burlakoff, AFWAL/AAAS-l.

The AL Test and Evaluation project was to recode the Digital Avionics

Information System (DAIS) Local Executive from JOVIAL J73/I to Ada. AL

would like to have redesigned the DAIS system, using Ada tasking features,

but due to a lack of time and manpower, decided to recode the Local

Executive as it was currently designed and determine what problems would

occur in doing so.

The Local Executive was recoded and many questions arose concerning

the Local Executive, Jovial, and Ada, some of which were not answered.

Also, none of the Local Executive routines were run through the Ada Test

Translator or the Ada Interpreter. AL relied mainly on desk-checking due

to problems with the Ada Translator. As a result, the Local Executive is

not debugged.

The Local Executive database was not broken down into smaller

packages. The three main JOVIAL compools were translated into Ada source

code as they stood, with the intent to later break down the compools once

it was established which routines needed access to what data. Since time

was short and the Local Executive was not debugged, this effort was not

undertaken.

9

AFWAL-TR-80-1024 F1

1. INFORMATION ABOUT THE PROBLEM YOU ARE PROGRAMMING

I.I. Give the major characteristics of the problem (e.g., mathematical

computation, bit manipulation, character handling, real time processing,

etc.). ATTACH DETAILED SPECIFICATION.

The Digital Avionics Information System (DAIS) Local Executive
provides the system software services which are utilized by the
DAIS Applications Software in each of the federated processors.
These services provide for the execution of Real Time
applications, sharing of common data, communication control within
remote processors, and fielding of remote processor interrupts.

The DAIS hardware consists of a number of processors,
AN/AYK-15's, tied to a ML-STD-1553A multiplex data bus.
Interprocessor communication occurs via a Bus Control Interface
Unit (SCIU).

The Partitioning Analyzing Linking Editing Facility (Palefac)
is a support tool for use by the mission programmer. One of its
primary functions is to construct the Executive database for the
user. The programmer need only write the mission software.
Palefac will then analyze the programs and initialize all data
structures in the Executive. Palefac outputs are then compiled
together with the Executive routines and mission software to form
a working DAIS system.

A detailed specification was enclosed with this Design
Validation Report and submitted to HOLWG. These documents are
official DAIS documents (Reference 9), (Reference 10).

1.2. Program use.

DAIS is an experimental development project. AL is currently
able to "fly" missions in the laboratory using DAIS hardware and

software.

1.3. Information about previous programming of the problem.

1.3.1. Date it was programmed.

The DAIS Local Executive, version 15 September 1978, was
recoded in Ada.

10

I

AFWAL-TR-80-1024

1.3.2. What was your connection with the program (e.g., designer,

programmer, maintenance programmer, none, etc.)?

The AL Test and Evaluation Team had no connection with the
design and coding of the DAIS Local Executive. However, one
member of the team, Mike Burlakoff, currently works in the DAIS
Software Group and is familiar with DAIS software and the Palefac
system.

1.3.3. If you are not intimately familiar with the program, do you have

access to someone who is (yes/no)?

AL had access to someone who was very familiar with the DAIS
Local Executive (Ronald Szkody, AFWAL/AAAS-I).

1.3.4. What was his/her relation to the program (designer/coder/etc.)?

His association with the DAIS Local Executive is as a
maintenance programmer in the DAIS Software Group.

1.3.5. What language was it coded in?

The DAIS Local Executive was coded in JOVIAL J73/I.

1.3.6. What compiler or assembler version was used? For what host and

target computers?

J73/I, version June 1978, was used for the application. With a
few modifications, the Local Executive will compile on AL's
1 September 1979 version of J73/I.

J73/1 is hosted on a Digital Equipment Corporation DECaystemlO
computer.

The target computer is an AN/AYK-15, a 16-bit machine.

11

AFWAL-TR-80-1 024

1.3.7. Was execution time efficiency a critical Implementation constraint?

Nov critical? Did this constraint affect the design and/or implementation

approach for your example?

The Local Executive must handle its assigned tasks quickly and
efficiently so that the DAIS Applications Software may run with as
little overhead as possible. Thus, execution time efficiency
underlaid the Local Executive deqsign and fiplementation approach.
In the J73/I version, use of assembly language was necessary in
order to increase execution speed.

1.3.8. Will the same efficiency constraint affect your Ada design and

coding approach?

The same constraint affected the Ada design and coding
approach.

1.3.9. If object code and/or data space efficiency was a critical

Implementation constraint, how critical was It? flow did this constraint

affect the design and/or implementation approach?

Object code and data space efficiency are very important
constraints placed upon the Local Executive. A processor has
limited memory In which both the Txecutive and Applications
Software must reside. Thus, the system programmer must insure
that the Executive Software uses a minimum amount of processor
memory. In the J73/1 version, the JOVIAL "OVERLAY" construct was
frequently employed to overlay data structures In an effort to
save data space.

1.3.10. Will the same constraint on space efficiency affect your Ada

design and coding approach?

The same constraint affected the Ada design and coding
approach.

12

AYVAL-TR-80-1 024

1.3.11. Does your example require concurrent processing? If so, is more

than one processor Involved? Whaat kind of scheduling approach was used?

Concurrent processing does not occur within the sof tware of the
Local Rxecutive. There is concurrent processing in the sense that
applications programs in different processors are running at the
same time. While one master executive maintains global control of
the system, each processor has Its own Local Executive that is
responsible for scheduling resident tasks locally.

The DAIS Local Executive uses a priority scheme whereby the
highest priority dispatchable task will always currently be
executing. That does not mean that a low priority task which is
running will be interrupted by a higher priority task which
suddenly becomes capable of running. The Local Executive allow
for that higher priority task to run should the lower priority
task complete execution, or become suspended (e.g., a task may
suspend itself by issuing a WAIT real-time statement).

1.3.12. State any other significant characteristics of the previous

program that may affect your Ada design and coding approach (e.g., was

reusability or portability important, was this a long life operational

program to be maintained)?

The DAIS system is currently in the demonstration stage. The

system is to be transferred out of the laboratory environment
wthin the next few years. Therefore it is important that the

Executive, as wel1 as all other mission software, be easily
maintainable over a long life cycle.

Transportability to always desirable, but in the case of an
executive, less important than efficiency.

1.4. If you have the data for the source program as previously coded in a

high level language, please give them for the previous version and later

for the Ada version you develop.

The following statistics are for the programming of the DAIS
Local Executive In J73/1 and Ada:

13

ATWAL-TR-80-1024

J73/I Ada

Number of executable statements 529 533
Loop statements 18 19

Conditional statements 117 117
Procedure (not function) calls 126 127

Assignment statements 248 251
Transfers of control 20 19

Labels 1 0
Number of identifiers declared 288 285

Number of comments 775 781

1.5. If possible, submit the original program together with the Ada

version.

The original program and its Ada version were included with
this Design Validation Report under separate cover and submitted
to HOLUC.

14

T -....- w- -r -.

AFWAL-TR-80-1024

2. INFRMATION ABOUT YOUR APPROACH TO PROGRAMING IN Ada

2.1. Was a significant redesign of this program done before coding in Ada

(yes/no)? If so, why?

A significant redesign was not done on the DAIS Local
Executive. AL started with the original Local Executive design
and initially recoded all of the internal tables into Ada. The
next step involved a line-for-line recode of the Local Executive
routines. As problems were uncovered, a redesign of some tables,
and their methods of access, occurred, involving both adding and
deleting variables from the database.

2.2. In what way is the new design better or worse than the original?

Why?

The redesigning of tables caused more array indexing to be
performed, which will cause the Local Executive, and the DAIS
system, to be less time efficient.

In the J73/1 version, many cases occurred where a pointer in a
table A referencing a variable in a table B actually contained a
machine address offset from the starting address of table B to the
referenced variable. Such a case occurs in the Minor Cycle rvent
Generation Tables. This type of access method was choosen to
reduce access time. Table B is actually defined as an array with
variable length entries. Having to calculate the array indices
for this type of table each time access is necessary would involve
too such overhead.

In Ada, it was not possible to access data with machine address
offsets. The tables had to be defined as variable length entry
arrays, using variant records with discriminants. To access these
tables, many array index calculations must now take place. Unless
these calculations are efficient, the Local Executive will run
much slower, a situation that cannot be afforded. Even if
calculated efficiently, the Ada version will still execute slower
than the J73/I version due to increased array indexing.

An attempt was made at using access types to define these
tables in an effort to increase the speed of the Local Executive.
The attempt failed since access types cannot denote static
variables. The Local Executive consists predominantly of
constants allocated statically at compile time (initialized by
Palefac) and the access types would have to point to these static

variables.

"Prow son 1

AFWAL-TR-80-1 024

The other alternative is to define all the tables as access
types and allocate them at run-time. In section 4.10.4 herein,
reasons are cited for why this solution may be unacceptable.

2.3. What Ada concepts, if any, affected your redesign?

As stated, only the data tables were redesigned. The design of
the Local Executive remained constant throughout the Test and
Evaluation process.

The Ada concepts that affected the redesign of the tables were
variable length entry arrays (using variant records and
discriminants) and access types.

2.4. How did the need for storage and/or time efficiency affect your

redesign (especially if these requirements posed Ada programming

difficulties later)?

Storage and time efficiency are both extremely important. In
the J73/1 version, much of the Executive data was overlayed in an
effort to save memory. In order to increase execution speed,
assembly language was used in various routines. Also, records
contained pointer data that referenced other records, as opposed
to referencing by array indices.

The Local Executive has tables where data exists in a record
for one case and not for another (e.g., the Event Table may have
entries If an event is located in another processor). In order to
save memory apace in the Ada version, variant records were
declared so that each record of a table (or array) would use as
little memory as possible.

AL is concerned as to whether the index calculations to access
elements in such arrays will be computed efficiently. As
mentioned in section 2.2 herein, an unsuccessful attempt was made
at using access types to increase efficiency.

2.5. Did you have any problems mapping your design into Ada source code?

What were they?

16

AFWA-TR-80-102 4

2.5.1.

Data arriving in messages from other processors must be queued
in order to efficiently employ both the CPU and the BCIIJ. Hence,

the data type of the reception queue must be defined. In the

J73/I version, the queue consisted of eight 33 word buffers of

type INTEGER. Data was removed from the queue via assembly
language statements in order to save time.

It is desirable to use Ada assignnent statements to remove data

from the queue. To do so, the type of the queue must be identical
to that of the receiving field. It was not apparent at the time
of coding that UNSAFE CONVERSION could be used to convert data in

the queue to its correct type so it could then be easily
transferred by Ada assignment statements.

2.5.2.

The DAIS Local Executive allows for tasks to issue certain
real-time statements (e.g., READ, WRITE, SCHEDULE, CANCEL, WAIT).

In the J73/I version, the real-time statements are implemented

with the use of the Jovial construct "DEFINE". For example, if an

applications task wishes to perform a READ operation, it can issue

the statement

READ (INSO07)

where INSO07 is the block of data it wants to read. The READ

statement is then "defined" into a call to a subroutine with
ISO07 as one of the parameters

X$ARD (INSOO7, D$INSO07);

This method is used to ease the writing of software for the

applications programmer, to separate Applications Software from
Executive Software, and to increase readability and clarity of the

Applications Software.

In Ada, this method of allowing the user to execute a real-time

statement, i.e., READ (INS007) , is possible but not feasible.
One implementation is to call a procedure named READ with one

parameter

READ (INSO07: in DATA.LOCK);
17

h

AFWAL-TR-80-1024

This routine is really a dummy procedure which does nothing but
call the real READ routine with all the parameters explicitly
stated. The overhead is two subroutine calls for every call to a
real-tine statement.

AL does not recommend allowing the equivalent of a Jovial
"DEFINE" in Ads. It is a useful construct for the DAIS real-time
statements but once a user is given the "DEFINE" capability, he
will surely overuse it and then Ada programs will lose their
clarity and maintainability.

2.5.3.

When issuing a SCHEDULE real-time statement to schedule an 4
applications task, the task name must be passed as a parameter so
the Local Executive will know which Task Table B entry to access.
Task Table B contains the task's starting address, and an assembly

language routine is used to transfer control to the task.

Ada does not allow procedure names to be passed as parameters,
so an enumeration type, TASK NAME, was defined as

type TASKNAME is (TASKI, TASK2, ... , TASKN);
TASK NAME_TABLE: constant array (TASKI .. TASKN) of INTEGER;

where TASKI ... TASKN are the names of all applications tasks.
The integers in TASK NAME TABLE are indices into the array
TASK TABLE B. Both TASK_NAME and TASKNAMETABLE would be
initalized by Palefac.

A task may now issue the real-time statement

SCHEDULE (TASK3: in TASKNAME);

To access TASK3"s Task Table B entry, use

TASKTABLEB (TASKNAMETABLE (TASK3))

In this situation, the overhead involves two array accesses every

time data is needed from Task Table B.

This method of scheduling, and also the need to pass the task
18

AFWAL-TR-80-1 024

name as a parameter, would not be needed if Ada tasking were used.
There would be no need for a Task Table B, and calls to tasks
would involve no more than issuing an "initiate" statement

initiate TASK3;

2.6. Do you feel that knowledge of Ada helped you arrive at a better

design? If so, how?

No, it did not. The DAIS Local Executive was recoded as it was
previously designed with only minor changes. AL does feel that
the Local Executive could have been redesigned and improved by4
making use of the Ada tasking features. However, time did not
permit a deeper investigation into the suitability of Ada tasking
to the project.

2.7. Did you change your design as a result of trying to program it in

Ada? Why? (This question should be answered each time Ada coding

difficulties or advantages miade you decide to change your design or design

approach.)

The basic design of the Local Executive remained constant
throughout the Test and Evaluation process. As previously
mentioned, only the table definitions, not their basic content or
purpose, changed.

2.8. Did you develop your program by yourself or as a team? If as a team,

give the account identifiers of the team members that influenced the

design or coding approach.

The majority of the effort was done on my own. When problems
arose concerning DAIS, J73/1, and/or Ada, the other members of the
team were consulted. Either solutions were found, or the problems
were documented for insertion into this report.

19

AFWAL-TR-80-1024

The AL Test and Evaluation Team consisted of:

ARPANET MIT-Multics

Alfred J. Scarpelli SCARPELLI@AVSAIL Scarpelli.AdaTE
Capt Steven R. Sarner, USAF SARNER@AVSAIL SSarner.AdaTE
Dr. Mark T. Michael MICHAEL@AVSAIL M~ichael.AdaTE
Guy A. Vince VINCE@AVSAIL
Mike Burlakoff t******~* Burlakoff.AdaTE

20

AFWAL-TR-80-1 024

3. SPECIFIC DIFFICULTIES OR CONCERNS ABOUT LANGUAGE FFATURES OR

RESTRICTIONS OF Ada

The following questions deal with the features of Ada. A feature may

be general (e.g., exception handling) or specific (e.g., underscores in

numeric literals). In answering the questions, please identify what

features you are dise'irsing in terms of sections of the Ada Reference

Manual (Reference 4) docum~entation.

3.1. Which language features did you find difficult to learn to use

correctly? Briefly describe the problems (e.g., Reference Manual not

clear) and their severity.

3.1.1.

Record Types (section 3.7, Referenc3 Manual) - It was not clear
if defining an array of variant record types was legal. The
construct of variant parts seemed to allow array elements to be of
variable length. It also seemed possible to define
variable-length arrays inside of variable-length arrays. After
determining that the above are legal, accessing these complex data
structures efficiently became a major concern.

3.1.2.

Access Types (section 3.8, Reference Manual) - The concept of
access types was not described in much detail in the Reference
Manual. The Rationale was clearer in its description; but useful,
simple examples were not given in either.

3.1.3.

Restricted Program Units (section 8.3, Reference Manual) - Use
of the restricted clause and what it accomplishes is not easily
determinable. In nested procedures, the restricted clause
restricts access to same of the outer procedures, depending on its
use. However, use of the restricted clause to reference
procedures at the same declaration level as the procedure issuing

21

AFWAL-TR-80-1024

the restricted clause achieves visibility to those other modules.
In fact, there is an implicit restricted clause in front of every

procedure which gains the visibility needed to call other
procedures. It had been stated that the restricted clause never
increases the visibility of a procedure, yet in this case it does.

3.1.4.

Tasks (section 9, Reference Manual) - The tasking of Ada may
have been an improved alternative to the way DAIS is currently
designed. However, due to a lack of time and nanpower, and the
complexity of tasking, AL was unable to apply tasking to the DAIS

system.

3.1.5.

Unsafe type conversions (section 13.10, Reference Manual) - The
Reference Manual and the Rationale mention very little on
UNSAFEPROGRAMMING. It is not stated whether the use of
UNSAFECONVERSION actually generates object code and does a
conversion of the data. Nor is it explicit that use of this
generic package is meant to view data in different
representations.

In the DAIS Local Executive, messages arriving over the data
bus had to be queued. Since the data can take on many formats, it
was not evident how to use Ada assignment statements to move data
in and out of the queues. It was pointed out at the Ada Test and
Evaluation Workshop in Boston on 23-26 October 1979 that
UNSAFEPROGRAMMING was the answer.

3.1.6.

ADDRESS attribute (Appendix A, Reference Manual) - In the
AN/AYK-15, 16-bit words yield precision from -32768 to 32767 but
actual memory addresses range from 0 to 65535. In another case,
if virtual addressing is used, addresses will be greater than the
precision of the machine can hold. What the ADDRESS attribute
yields in such cases is not understood.

3.1.7.

In many instances, the Ada Reference Manual is not clear on the
topic it is trying to describe. The sections which were not clear

22

AFWAL-TR-80-1 024 r

usually lacked sufficient documentation and useful examples. In
many cases, one good example would have enlightened the reader
about the subject. However, in most sections of the Reference
Manual, examples were few, taken out of context, and not too
detailed. Future versions should include explicit, as well as
additional examples, and also increased documentation.

3.2. Which features did you find difficult to apply (even after having

learned how to use then correctly)? Describe the problems.

3.2.1.

AL could not apply access types (section 3.8, Reference M1anual)
to its project. The Local Executive tables consist predominantly
of constants with various relationships between them. Access
types could have been used to greatly improve access performance,
but they are not capable of denoting static variables.

To use access types, all the constants and tables would have to
be declared as access variables. AL did not attempt to define all
Local Executive tables as access types. At the time of recoding
the tables from J73/1 to Ada, not enough was known about access
types to do so. It is now clearer that this approach could have
been used effectively. However, the access types would have to be
initialized at run-time, a process with possibly too much overhead
(see section 4.10.4 herein).

3.2.2.

Interprocessor communication in the DAIS system is done over .1
..Joltiplex bus system. When one processor wishes to send a message
to another processor, it places the message in its transmission
queue. The BCIU reads that data from memory and sends it over the
bus to the correct processor independent of the CPU. The
receiving processor's BCIU stores that message in a memory buffer
specified by the contents of a user programmed, fixed memory
location. It is desirable to allocate reception buffers
dynamically, and only of the required length, since messages can
be of variable length.

AL attempted to create a message reception queue by using
access types (section 3.8, Reference Manual) to form a dynamic
linked list of incoming messages. Assuming that the word count is
contained in the first word of the message, a type QBUFFER is
defined as follows:

23

AFWAL-TR-80-1024

type QBUFFER is access
record

WORDCOUNT: constant INTEGER;
MSG: array (I .. WORDCOUNT) of INTEGER;
QLINK: QBUFFER;

end record;

Before a message arrives, the BCUJ must know the address where the
message should be placed. The following object declaration is
issued:

BUFI:- new OBUFFER (???, ???, Q LINK -> null);
MSGBUFADDR:- BUF1'ADDRESS;

Withholding discussion of the field qualifications of BUFI for
later, when the message arrives, the BCIU will store it at the
memory address contained in MSG__BUFADDR and a message arrived
interrupt will occur. The following code would then be executed
in the associated interrupt handler:

BUF2:- new OBUFFER (???, ???, 0 LINK -> null);

HUFI.Q_LINK:- BUF2;
HSGBUF ADDR:- BUF2'ADDRESS;

The new buffer, BUF2, is allocated, the link from BU FI to BUF2 is

established, and the BCIU is informed of the address of BUF2.

The new buffer must be allocated before the message arrives
since the BCIU, which operates independently of the CPU, must know

where to store the message. To allocate the buffer, all fields of

type QBUFFER must be qualified. To do so, the WORDCOUNT must be
known. However, the IIRD_COUNT will not be known until the

message arrives, at which time it is too late to allocate the

buffer.

24

AFWAL-TR-80-1024

The message buffer cannot be allocated at the time the message
begins to arrive because the BCIU only generates an interrupt when
the message is ctmpletely received, not at the start of the
message.

For these reasons, the attempt using access types failed.

3.2.3.

The use of UNSAFEPROGRAMMING (section 13.10, Reference Manual)
to handle the transmission and reception queues was not attempted
due to not understanding the significance of this package until
the Ada Workshop. However, it is of concern as to whether the use
of UNSAFECONVERSION actually generates executable code. Does a
real conversion actually take place? If so, the overhead of
function calls to UNSAFECONVERSION, and execution of its code,
could be prohibitive.

3.3. What language features seem to be missing in Ada that you needed for

your application? (Provide an answer even if you later discovered a way

of using Ada to meet your needs.)

3.3.1.

A method of representing data in different formats. It was
later discovered that UNSAFEPROGRAMMING (section 13.10, Reference
Manual) is the method meant to handle such requirements.

3.3.2.

An efficient method of implementing the DAIS real-time
statements is necessary (see sections 2.5.2 and 2.5.3 herein).

3.3.3.

The FOR loop construct (section 5.6, Reference Manual) is only
capable of incrementing or decrementing the loop by one each time
through the loop. There are situations in which a progremmer may
wish to loop by values other than one (2, 3, 8, 200, -10, etc.).
It is desirable to allow the user to increment and decrement the

FOR loop by any value he wishes.
25

AFWAL-TR-80-1 024

3.3.4.

The DAIS Local Executive has control over the states of tasks
(Instruction Counter (IC), general registers, condition status,
and workspace pointer). It handles the saving of the processor
state whien an interrupt occurs, and restores the state upon return
from interrupt. Ada, or any other HOL including JOVIAL, does not
give access to this low level environment. Thus, assembly
language was used in both JOVIAL and Ada versions to access and
control the states of tasks.

The DAIS approach allows for an interrupted task to be
suspended and another task of higher priority to begin execution.
When the higher priority task completes, or is itself interrupted,
it is not guaranteed that the task just previously suspended will
immediately resume execution. Hence, a simple pushdown stack for
allocating task working space for user data, compiler temporaries,
etc., is not a workable solution. A task that was suspended and
then restarted may expand its workspace on the stack, overwriting
a suspended task's workspace. Therefore, the Local Executive must
be able to manage the workspace pointer in order to tell the
compiler which datn space to use when the Local Executive
determines the next task to run.

JOVIAL allows based data. To implement the DAIS approach, a
stack area is allocated for each task and the Local Executive is
informed by Palefac at compile time where the data space for each
task is located. When an interrupt occurs, the IC, general
registers, condition status, and current location of that task's
workspace pointer are all saved (by assembly language) in the
entry designated for that task in Task Table B.

Raying this data stored in Task Table B and maintaining a
workspace area is what allows the Local Executive to execute any
task next. Task workspace areas are not stacked. Rather the
maximum amount of storage needed by the task is computed by
Palefac and allocated at compile time.

AL could not determine how to implement this approach in Ada.
Although assembly language could be used to load and store the IC,j
general registers, and condition status, the Local Executive still
needs control of the workspace pointer.

3.3.5.

DAIS operates on a time period called Minor Cycles. There are
128 Minor Cycles per second, constituting one Mahjor Frame. Tasks
are scheduled to run on certain Minor Cycles in each Major Frame,
starting on Minor Cycle X (the phase) and running every Y Minor

26

AFWAL-TR-80-1024

Cycles (the period). For example, a task monitoring sensor input
may have to run on Minor Cycles 2, 6, 10, 14, 18, etc. The phase
is 2 and the period is 4.

If Ada tasking is to be used, there must be a capability to
initiate a task every X microseconds if it is necessary that a
task run at such a period.

3.4. Were there any interactions between Ada features and restrictions

that caused you difficulties? Describe the problem.

All problems encountered with Ada have been documented in other
sections of this report. The majority of the problems concern
access types.

3.5. Please describe the difficult choices you encountered in developing

your Ada examples and what you felt was the right choice.

In the Minor Cycle Event Generation Tables, three arrays,
including the Event Table, had to be defined. Since these three
tables are accessed at least 128 times a second by one procedure
alone, it is necessary to have efficient access to these tables.
AL wanted to use access types (section 3.8, Reference Manual) to
define two of the three tables (MCTI and MCT2) in order to
increase access time efficiency. This use was not possible since
access types are not able to denote static variables (i.e., access
type MCT2 would have to point to the statically defined Event
Table).

In the J73/I version, MCTI contained machine address offsets
pointing to YICT2 anO 1CT2 also contained offsets, addressing the
Event Table. All three tables were defined as arrays but these
offsets eliminated the array indexing that would have to occur in
order to access the data in the tables.

As a result, AL decided to use arrays to define MCTI and MCT2.
The decision was not a favorable one as added array index
calculations, especially on variable length entry arrays (e.g.,
the Event Table), will clearly increase access time and lower
v xecutive efficiency.

27IiA

AFWAL-TR-80-1024

3.6. Was it possible to express your program clearly and yet in a way that

seems to permit a good compiler to generate efficient code? Or are you

concerned that certain Ada constructs in your program may be compiled

inef fic iently?

The DAIS Local Executive data structures contain some arrays
where the elements of those arrays are of variable length.
Variant records (section 3.7.2, Reference Manual) vere used to map
this design into Ada.

AL is concerned about variable length element arrays. The
concept is good as long as the compiler is able to generate
efficient code to access these elements. Since the lengths of the
elements are different, calculation of indices are not as simple
as with arrays containing elements of constant size. The Local
Executive is dealing in a time-critical environment, so efficient
code to access data structures is a necessity.

28

AFWAL-TR-80-1 024

4. OVERALL EVALUATION

4.1. After allowing for familiarization with Ada, and based on your Ada

coding experiences, do you think developing a debugged program similiar to

the one you did might take longer for you in Ada than In some other HOL or L

assembler?

In most cases, it should not take longer to develop a debugged
program in Ada once Ada is learned to be used correctly and Ada
progranmming techniques are formed. The language is well
structured, and the strong typing can prevent many errors at
compile time which in another language may take a long period of
time to detect, depending on how subtle the errors are.

4.2. Ada's strong type checking requires greater specification of data and

its usage than is-.customary in many other languages. Was this strong

typing an important feature that helped to detect programming errors? What

errors detected?

Detection at compile time did not help, since desk checking was
entirely relied upon. The strong typing, did play a vital role in
the recode. The type definition of all data was closely monitored
to prevent illegal assignments. Also, use of enumeration types
allowed specification of all values that a particular variable
could have, mfaking the program more reliable.

4.3. In examining your Ada program (and other examples), do you believe

the code Is more readable than code you have previously seen? In what

way, and why?

4.3.1.

Ada source code appears much more readable than code generated
in other high order languages. The fol lowing are some general
comments:

29

AFWAL-TR-80-1 024

- Using upper case for variables and lower case for Ada
reserved words make the Ada constrilcts starnd out better
(e.g., if then else clauses).

- Double "-"n (--) to indicate comments make the comments
stand apart from the code. I

- Longer identifiers (or variable names), and the use of
underscores to separate vords within the names (e.g.,
TASK TABLEB) make them easier to read, with a fuller
understanding of what they mean.

- Structured programming, including indentation of the
Structured constructs and matching "end" statements, make
program flow easy to follow.

- The use of "others" and "null" make programmer intent very
clear.

- The %.all" convention clearly states the situation, as well
as making programming much easier. It eliminates having to
repeat source code for all members of the structure it is
referencing, making the program easier to read and maintain.

4.3.2.

AL suggests the following for improving the readability of Ada:

-The "space" and "skip" directives should be added to
compiler. "Space V" would leave X blank lines in the source
listing. "Skip Y" would skip down 1/3 or 1/2 of the page
(or some other increment). Their use would space out
cmnents and code, making the source easier to read.

IlUse a CALL or PERFORM statement in procedure calls. Stating
only the procedure name, and any parameters, does not give

*the reader a clear picture of what the program is actually
doing (especially If there are no parameters).

-The "restricted" clause is a misleading statement. In some
cases It actually increases visibility, allowing two
procedures declared at the same level to reference each
other. With nested procedures, its mse is clearer but still
confusing. AL recommends the construct "restricted to",
which shows more clearly where access is restricted to.

-The syntax of the "case" statement must be changed. "came X
of when ->..." does not sound gramatically correct. AL
suggests removing the "of", leaving "case X when .. "

30

AFWAL-TR-80-1 024

This construct is easier to read yet still maintains the
meaning intended.

4.4. Based on your experience in using Ada, list some advantages that

wNold probably accrue to a project in your application area if it used Ada

exclusively.

The Ada source code would be self-documenting and much easier
to read and follow. A maintenance programmer would have a greater
understanding of the program with less effort.

Ada promotes top-down structured programming.

Thp job of transporting programs from one machine to another
would be eaqter.

Strong typing would prevent subtle type errors and maintain the
Integrity of the data. Proper use of packages will prevent
procedures from accessing and modifying data that they should not
have access to.

4.5. Describe the proble s the project in your application area might

encounter if it used Ada exclusively.

Muich manipulation occurs with data that arrives over the data
bus and is placed in queues. The data must be viewed in several
different formats. The use of UNSAFE CONVERSION could be a severe
problem if the function actually generates machine code which moist
be executed every time a conversin is needed.

The DAIS Local Executive would have to use assembly language tto
manage the workspace pointer and to access the Instruction
Counter, general registers, and condition status (see section
3.3.4 herein).

The size of the Ads run-time support and the software compiled
by the Ada compiler is of areat concern when dealing with machines
of limited memory space. Inefficient compilation and a large
run-time package may generate code that will not fit Into memory.

There is concern for possible inefficient accessing methois
which will slow down the systen (i.e., accessing arrays with
varitble longth entries).

The overhead in run-time initialization must be considerod if

AFWAL-TR-80-1 024

access types are to be used (see section 4.10.4 herein).

4.6. How would you feel about doing your next embedded computer project in I

Ada, and why?

Ada is a very capable language. It permits good structured
code and the strong typing helps maintain data integarity. AL
would like to use Ada in future projects. However, inefficiencies
in the language may force the continued use of JOVIAL for real
time applications unless the problemws are resolved.

The greatest concern is with access types. The basic concept
is excellent but the associated problems make them of linited4
value for AL applications.

4.7. What features do you feel are redundant, i.e., could be deleted

without impairing the usability of the language because an alternate

method of meeting a programming need exists?

No redundant features were uncovered.

4.8. What are the five most important changes you think should be made to

Ada? Why?

Allow compile time initializations of access types, as opposed
to doing initializations at run-time (see section 4.10.4 herein).

There is too much overhead in forcing all subprograms to be
automatically recursive and reentrant (section 6.2, Reference
Manual).* Reserved words such as "RECURSIVE" and "REENTRANT" (used
in J73/1) should be used to identify to the compiler a recursive
or reentra~nt subprogram.

Force all procedure calls to use a reserved word "PERFORM"
before the procedure name to improve readability.

Allow for read only packages. Data contained in packages could
be protected against procedures which only read the data but
should not modify it.

Implement the "restricted to" clause to improve readability.
Also, force a progrmer to state expliritly at the beginning of a

32

AYWAL-TR-80-1 024

procedure, all procedures that its visibility is restricted to
(i.e., eliminate implicit restricted clause), once again for
clarity.

4.9. What aspects of Ada did you particularly like and would not want to

have changed? Why?

Strong typing - The strong type checking eliminates errors and
improves program reliability.

Packages - The partitioning of data into packages for use by
selected routines will maintain data integrity. Also, the ability
to define procedures inside of packages, and hiding the procedure
bodies from users if desired, is a good concept. Thus, libraries
of routines can be defined, and their inner workings kept secret.

33

AFWAL-TR-80-1 024

4.10. Any other comments not covered above.

4.10.1.

The JOVIAL language offers a tracing feature to aid in the
debugging of programs. It is recommended that such a feature be
added to the Ada Environment.

4.10.2.

Range constraints on types and subtypes are vital for
maintaining the integrity of the data. The construct prevents
types fromi taking on illegal values. However, the overhead of all
these run-time checks could be too great in a time critical
application. Thus, to avoid this added delay in time, a
programmer may leave out the range checks, losing an important
language feature. Range constraints are a good idea but may not
see much use in real tine applications w~here fast exe,---tion is
essential.

4.10.3.

In some applications, many records less than the length of one
memory word can be tightly packed into a small number of words.
The data usually contains some logical relationship that access
types could express quite easily. However, to use access types,
an extra word must be added for each one of these records to
maintain the link, and the relationship, between the records.
This word would contain the pointer to (or address of) the next
member In the link. Thus, if six objects are packed into one
word, at least seven words are now necessary to represent this
data structure of access types. Too much memory is used if accesA
types are employed, so the implementation of access types is not
feasible for this application even though the concept of access
types is.

4.10.4.

To use access types, the access variable must be allocated by
use of the allocator "nw at rum-time. It would be extremely
desirable to allocate access types at compile time. The DAIS
Local Executive has tables which have relationships that could be
expressed by access types. Also, the use of access types would
greatly improve access time efficiency. MuIch of the data

34

AFWAL-TR-80-1 024

contained in the tables is known at compile time (initialized by
Palefac). However, the current language design forces these
tables to he allocated at run-time if access types are used. The
overhead associated with run-time allocation can be excessive.

Suppose memory costs a dollar a bit (an accurate figure for
some systems), and suppose it takes 480 extra bits per computer to
do these run-time initializations. The cost is $480 per computer.
If the goverment purchases only 1000 of these computers, and
associated Ada software, the cost is $480,000 extra dollars for an4
initialization process that could have occurred at compile time.
While it is true that $480,000 may only be a small percentage of
the total cost of the project, over the course of many projects
using Ada, the cumulative dollar amount of these small percentages
will soar. Thus, a tremendous problem with access types exists.

Allowing the linking loader to do the access type allocations
defeats the language. The language must allow for this feature.
Otherwise, with memory space at a premium, and such high overhead,
access types will certainly not be used.

35

AFWAL-TR-80-1024

SECTION V

CONCLUSIONS

In accomplishing the objectives of this Work Unit, several

conclusions were drawn concerning the work done and the Ada language. As

stated in the Design Validation Report, the DAIS Local Executive was

recoded as it was previously designed, with minimal changes. This

approach was suggested by HOLWC, As also previously stated, AL feels that

the DAIS Local Executive could have been redesigned and recoded more

efficiently using the Ada tasking features.

Conclusions regarding the language itself were largely presented in

Section IV. Ada was a capable language for implemention of the current

DAIS Local Executive approach as far as coding is concerned. AL feels

that Ada is a good, strong language with many useful features. The

language can be used to program any algorithm. Regarding execution speed

and efficiency, it is difficult to determine how Ada would handle the

real-time execution requirenent without actually having an Ada compiler

available. Ada's ability to perform would depend on how efficient the Ada

compiler i. in generating code for the target machine. The true test of

the language will come when such facilities are available in 1983.

36

AYWAL-TR-80-1024

REFERENCES

1. Barry C. DeRoze, An Introspective Analysis of DOD Weapon System
Software Management, Defense Management Journal, October 1975,
pp. 2-7.

2. Department of Defense Requirements for High Order Computer Programming
Languages "STEELMAN", DOD High Order Language Working Group, DARPA,
June 1978.

3. Dr. Edward Lieblein and Edith W. Martin, Military Computer Family,
Part V: Software for Embedded Computers, Military Electronics/
Countermeasures, July 1979, pp. 52-54.

4. Jean D. Ichbiah et al., Preliminary Ada Reference Manual, ACM SIGPLAN
Notices, Vol. 14, No. 6, Part A, June 1979.

5. Jean D. Ichbiah et al., Rationale for the Design of the Ada
Programming Language, ACM SIGPLAN Notices, Vol. 14, No. 6, Part B,
June 1979.

6. Jean D. Ichbiah et al., A Tutorial: An Informal Introduction To Ada,
Ci Honeywell Bull, Louveciennes, Prance, April 1979.

7. Proceedings of the Ada Environment Wlorkshop (San Diego, California,
27-29 November 1979), DOD High Order Language Working Group, DARPA,
November 1979.

8. Department of Defense Requirements for Ada Language Integrated
Computer Environments "PRELIMINARY STONEfAN", DOD High Order Language
Working Group, DARPA, November 1979.

9. DAIS Mission Software Product Specification, Executive. Vol. 1: Local
Executive, Air Force Avionics Laboratory, Wright-Patterson Air Force
Base, Ohio 45433, SA 201302 Pt 2, Vol. 1, 27 August 1976.

10. Computer Program Design Specification for DAIS Mission Software
Executive, Air Force Avionics Laboratory, Wright-Patterson Air Force

Base, Ohio 45433, SA 201302A, 1 June 1979.

37

MEI

